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1. Limitations of the current dicing technologies and motivations

2. Integrating Plasma dicing in a 3D packaging flow.
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1. Throughput 2. Materials

Motivations – What do we want?

4. Perfect Die3. Shapes
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Si

PBO

Oxide, nitride, 
PR, polyimide, 
PBO, metals
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Identifying bottlenecks for throughput
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𝐺𝑜𝑜𝑑 𝑑𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟
=
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Yield is affected

by dicing

(damages, residues)

Number of dies per wafer

✓ Die dimension

✓ Die shape

✓ Die layout (orthogonal or not)

✓ Width of dicing streets

Determined by dicing technology.

Wafers per hour

✓ Number of process steps

✓ Process step time

Cut speed has to be high with 

minimal addition of required steps.

Dicing is a primary bottleneck for throughput



Wafer Dicing Technology limits
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Blade 
Dicing

Laser 
Dicing

Damages

Cracks, chips, debris, 
water residues

Heat, delamination

Cut speeds

Slow for small dies, thin 
wafers

Slow for small dies, 
multiple passes for thicker / 

multi-material wafers 

Sequential mechanical / thermal processes limited by beam/ blade dimensions

80 μm 50 μm

> 10 μm

> 5 μm



Parallel + chemical dicing technology: plasma dicing
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Tape frame

Tape

Street size

> 80 μm
Aspect ratio < 30:1, die picking is usually 

the bottleneck

Die layout

Orthogonal No constraint

Damages

Cracks, chips, debris, 
water residues

Sub-μm sidewall roughness, 
no chipping, cracking, recast

Cut speeds

Slow for small dies, thin wafers Slow for thick dies, hard-material wafers 

Dimension accuracy

> 10 μm < 1 µm

Blade 
Dicing

Highest die density and best quality with plasma

Plasma 
Dicing



Impact on die strength
22
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• Thick die -> sidewall contributions to the die strengths are large

• Sidewall quality correlates to die strengths

• Plasma dicing improves die strengths for thick dies

[MPa]

• When die is thin, sidewall contributions to die strengths diminishes

• Wafer backside finish quality dominates die strengths
• Same wafer backside finish → similar thin die strengths



Impact on throughput

Smaller streets More dies
=> higher gains compared to blade dicing

Thinner substrates Less to etch
=> Faster cut speed by several order of magnitudes
compared to blade dicing.



Throughput and Cost of ownership

Better CoO with plasma dicing for small dies / thin
wafers compared to blade dicing

-> complementary approach in terms of CoO.

Even when the CoO is worse with plasma dicing, 

some applications may need the best quality available.

Plasma dicing

Blade/laser dicing

small large
Die size

Thin

Thick
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Plasma Dicing – Integrating FEOL into BEOL

Passivation (C4F8 → (CF2)n)

Selective passivation 

removal

Isotropic etching of Si (SF6)

Three-step “Bosch” process

Deposition

Etch A

Etch B
Most common trade-offs (dicing quality vs throughput) are:

- Large scallop depths vs etch rate

- Large scallop aspect ratio vs selectivity.

Tape frame

Tape



Typical performance of plasma dicing processes
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Ultra-low damage

Tape temperature is ~60°C (low thermal), 
no mechanical action 

Materials

High selectivity with SiO2 (1000:1), PR ( > 250:1), 
possible to etch with metals exposed

Die shapes

Litho-defined

Cut speeds

Typically 25-30 μm / min for Silicon

Dimension accuracy

Litho-defined (~100 nm)

Performance looks promising 

(5 min-long process for a common 150 um-thick wafer).

Optional additional mask (SiO/N passivation is enough)

What about the die strength?
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1. Limitations of the current dicing technologies and motivations

2. Integrating Plasma dicing in a 3D packaging flow.



Plasma dicing in a Damascene RDL process flow
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Damascene process flow allows higher RDL density, sub-micron L&S.

Plasma dicing and other key technologies allow parallelizing steps.

RDL trench etch

Dicing streets etch

TSV etch

Can happen in parallel
(plasma dicing)

PR/CR strip

FCP strip

Can happen in parallel
(dry strip / HDRF)

TSV fill

Low T (~150ºC) conformal
Liner/barrier/Cu seed (FAST)

Cu annealing + CMP



Bonus of plasma dicing – TSV etching during dicing
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8µm Via diameter
120µm deep

15µm Trench diameter
400µm deep

Vertical profileHigh rate

Fluorocarbon polymer needs to be removed before TSVs can be filled.



HDRF: Efficient fluorocarbon polymer removal
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Downstream

ions

High plasma density ICP source

Radicals density > 1E17 cm-3 

Mainly radicals (~ 10,000 x more than 

ions at wafer level)

Low temperature processing < 70°C

Low impact to sensitive devices

10KV

DRIE polymer

Via top

F*

No F*No more trace of F and C

After HDRF

XPS analysisEDX analysis

Several 

small ICP

sources



Low Temperature Processes for TSV Integration
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TSV  CVD Liner

• Continuous

• Conformal 

• Leakage/breakdown

• Breakdown

• Adhesion

• Thermal budget

F.A.S.T.  SiO2

TSV Barrier/Seed

• Continuous

• Conformal

• Thermal budget

• Copper compatible

• Low resistivity

F.A.S.T. TiN/Cu

TSV Via Etch

• 10:1 Aspect Ratio

• Smooth sidewalls

• Uniform depth

• Vertical profile

• No undercut

DRIE Si

Scallops

Problem:



Liner Technology Approaches for TSV
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ALD

PEALD

Very thin

Slow rate

Conformal

Process time

Process time

PECVD

Very thick

High rate

Non-

conformal

Process time

FAST

Thick

Moderate 

rate

Conformal

PVD

FAST mode

Combined

mode

(FAST + ALD)

ALD



F.A.S.T.® Crossroads of ALD and CVD

19

(PE)CVD

(PE)ALD
Monolayer

growth

Fast

Atomic

Sequential

Technology

Multilayer growth



F.A.S.T.® SiO2 Liner
Conformality adjustable (150°C)
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TiN and Cu example with FAST
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ALD:

Slow, linear

FAST:

Fast, linear

MOCVD:

Fast, non-

linear

95% conformality

10:1 AR

30nm/min

<200°C

375°C

TiN Copper



Conclusion

Plasma dicing is a complementary technology: 

laser ablation/stealth and saw dicing will not be replaced, only new 

devices will now be possible.

Top-notch dicing quality if requirements are extreme.

3D/hybrid packaging process flows benefit a lot from plasma dicing.
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Thank you for your attention!
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Surface Activation/Cleaning for Wafer Bonding
High O* exposure without ions, UV or high temp
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Without plasma 

treatment

With plasma

treatment

Reduced ion-impact allows longer radicals exposure.

Lower surface activation energy promotes bonding.

Silicon:Silicon

Silicon:Quartz
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voids

<1 void

Flux 
residues

Improved epoxy

wetting

and void-free reflow

Contact angle 

60-80° to 10°
with O* radical 
exposure

No treatment

Conventional

HDRF

+ 60%

+ 17%

Wire Bonding Pad CleaningImproved underfill

distribution

Contamination and/or 
oxidation removal 


