YOU IMAGINE. WE ENABL

Electronic Packaging Technologies for Advanced Medical Device Applications

IMAPS ATW on Microelectronics, Systems & Packaging for Medical Applications

December 5, 2012

Electronic Packaging Technologies for Advanced Medical Device Applications

Frank D. Egitto, Rabindra N. Das, Glen Thomas and Susan Bagen

Endicott Interconnect Technologies, Inc. 1903 Clark Street, Endicott, New York, 13760

Presentation given by: Susan Bagen, PE

Medical Device

A medical device is a product used for medical purposes in patients, in diagnosis, therapy or surgery.

- What does this definition tell us?
 - Almost nothing!
- Probably the most nebulous, diverse market.
 - Unlike other electronics markets (computers, cellphones, entertainment, and even A&D), there is often little or no commonality in technology used even within similar product segments.

Medical Electronics/Devices

Medical Opportunities

Implantable Electronics: Substrate Technology

Conformal Electronics

Stretchable Substrates

Implantable

RigidFlexibleSubstratesSubstrates

C

Develop miniaturized rigid substrate for SWaP (size, power and weight) advantage.

Develop flexible substrates to satisfy space requirements for medical imaging and health monitoring devices.

Develop bio-compatible and or bio-stable shapeless substrates for Conformal Electronics.

Implantable Electronics

Rigid Substrates

Electronics Miniaturization via System-in-Package (SiP)

Building Blocks SiP Fabrication & Assembly Technology – HDI Substrates

- Thin core vias are 4x smaller
- Thin core requires fewer costly build up layers for the same wiring capacity
- Thinner core reduces electrical parasitics

Building Blocks Rigid HDI Substrate With High Core Via Density

- Very Dense Package Interconnect
 - Ultra Dense Core Via Pitch can eliminate additional build up layers
- Dual Side Component Mounting
- Fine Line Width and Spacing
 - 18–25 μm

UV Laser Drilled CoreEZ® Thin Core: 100 um diameter pad (50 um via)

Standard Build-Up Mechanically drilled core: 400 micron diameter pad, 200 um diameter via

HDI Substrate has 9X Core Via Density over conventional build up PWB

 \bigcirc

 \bigcirc

 \bigcirc

 \odot

 \odot

Building Blocks SiP Fabrication & Assembly Technology

- Embedding Resistors and Capacitors (R&C)
 - Remove discrete passive devices and incorporate into the substrate to reduce required surface area

19. 95K

CoreEZ[®] 3-8-3 with Embedded R&C

Building Blocks SiP Fabrication & Assembly Technology – Bare Die

Bare Semiconductor Die

Embedded Die

•Unpackaged die has significantly smaller footprint.

•Flipchip attach results in smallest configuration.

Ultrasound Application

Si Package – Medical Imaging

- CoreEZ[®] 2-4-2 substrate
- SiP assembly (FCA)

Miniaturized Rigid Substrate

ICD (Implantable Cardioverter Defibrillator) and Pacemaker

- Smaller, less intrusive applications for implantable devices
- High density interconnect substrate
 - 8 layers
 - 30.5x 12.8 mm & 43.8 x 40.6 mm
- October 2008 marked 1st human implant with EI substrate.

3D Packaging Package-Interposer-Package (PIP) Technology

A new 3D "Package Interposer Package" (PIP) solution is suitable for combining multiple memory, ASICs, stacked die, stacked packaged die, etc., into a single package.

Schematic of Package-Interposer-Package (PIP) construction with 4 packages and 3 interposers

3D Packaging Package-Interposer-Package (PIP) Technology

Benefits of Package-Interposer-Package

- High density, small pitch
- Re-workable and replaceable
- Polymer or ceramic interposer provides additional support for improving stability and reliability
- PIP will experience less warpage and thermal stress
- Mitigates problems with coplanarity between packages

3D Packaging Package-Interposer-Package (PIP) Technology

Package-Interposer Package (PiP) construction with multiple substrates A – Top View B- Cross-section

Double side assembled substrate with stacked packaged die (memory attached to processor)

Flexible Substrates

Extreme Electronics Miniaturization via Microflex Assemblies

Page 20

Microflex Device Packaging

Transducers & Die

- PZT, PLZT, PMN-PT,
- ASIC Die

Substrate Fabrication

- 25 μm laser drilled vias (minimum)
- 12/12µm line width & space (minimum)

IC Assembly

- Flip chip pitch down to 70 μm (minimum)
- Piezoelectric Crystal assembly

Module Tester

• Full functional module test

Ultra Thin Polyimide Flex Manufacturing

Micro Pillar Technology for Finer Pitch Applications

ASIC die with 70 μm bonding pad pitch

Microflex Assembly Package Extreme Miniaturization

- Sensor assembly rolled to 1.175mm diameter
- 5 Flip Chip ASIC, 1mm thick, 31 I/O each, 2.5mm x 0.5mm
 - 22 micron flip chip bumps on 70 micron die pad pitch
- 12.5mm by 6.5 mm single layer flex circuit
 - 14 micron wide lines and space copper circuitry
 - 12.5 micron thick polyimide dielectric
- Prototype to production
 - Over 1.5M shipped

High Density Double-Sided Flex

Ultrasound Medical Application

- 11 µm lines / spaces
- 25 µm vias
- 6 µm thick metallurgy
- 12.5 µm polyimide
- Flexible soldermask
- FC ASIC Die & SMT passives

Multilayer Flex – Study to Define Design Rules

Multilayer Flex

12 metal layers, 325 – 330 μm thick, bend radius 25 mm or higher

Multilayer Flex

12 metal layers, 190 µm thick, bend radius 25 mm or less

Multilayer Flex

2 metal layers, ~25 µm thick, Roll diameter: 4.6 mm

6 metal layers, ~125 µm thick

Liquid Crystal Polymer (LCP)

LCP based Z-interconnect substrate

- 1, 1.5, 2, 2.5 mil lines & spaces
- 2 & 4 mil thru vias
- 1, 2, 3 mil blind vias

6 Layer

Understand uVia Reliability

LCP based Rigid-Flex

Rigid Flex gives the ability to design circuitry to fit the device, rather than building the device to fit the circuitry.

Roll-to-Roll Manufacturing

Thin Film Deposition & Laser Processing

Photolithography

Wet Chemical Etching & Cleaning

R2R can lead to reductions in cost.

- A fully integrated facility
- Lower capital & labor cost

Stretchable Substrates

Conformable Electronics

Page 33

Stretchable Electronics

Conductive wires made from a new carbon nanotube-polymer composite.

Professor Takao Someya of the University of Tokyo

Stretchable Electronics with a Twist: Prof. John A. Rogers, University of Illinois at Urbana-Champaign)

Stretchable Electronics Process Development for Metal Adhesion

- Bio-compatible
- Bio-stable
- Fine lines

Flexible electronics

(Assembled substrates)

PDMS Coating Conformal electronics

Pure transparent PDMS

Filled PDMS

PDMS Coatings Before and after stretching

Before stretching

Stretched PDMS

Stretched PDMS

Water Soluble PVA Substrate

Electronics Packaging for Medical Devices demand novel substrate materials, ultra high density assemblies and unique form factors.

Widespread practical implementation requires:

- Implementation of low-cost, high volume manufacturing techniques like roll-to-roll.
- Biocompatible material sets and supply chain.

Thank you for your attention!

