Régis HAMELIN

From Nano to Macro Power Electronics: a european perspective

- 1. SCOPE of THE PRESENTATION
- 2. EUROPEAN INVESTMENT STRATEGY
- 3. THE EUROPEAN COMPETITIVE POSITION
- 4. R&D PROGRAMMES AND PROJECTS
- 5. LOW POWER APPLICATIONS
- 6. CONCLUSIONS

European Commission support

SOCIETAL CHALLENGES

Living Healthy, Ageing Well

Efficient use of resources

Smart, green transport

Innovative online public services in an inclusive and reflective society **Power Electronics'**

Main contribution

Living in a secure society

2020

1990

Greenhouse gases 20%

Less Energy consumption

20%

The share of renewable energy

Growing Electrification

More Electric and all electric Aircrafts

1.6B vehicles in 2030 – 2,5B in 2050

In Western Europe : 60TWh in 2009 to 104TWh in 2020 Servers and datacenters are 2.5% of US electricity consumption

SMART GRID

Power Electronics is Ubiquitous in Smart Grid

Energy Efficiency Improvement

MPROVE

Doing things better

Less power consumption Better efficiency Better heat management

LED lighting : 50% savings

2 approaches

Adopt a context aware approach

Smart management : +20%

Key Enabling Technologies

Micro and nanoelectronics

Advanced Materials

Nanotechnology

Biotechnology

Photonics

Advanced Manufacturing systems

POWER **ELECTRONICS** is NOT EXPLICITELY **IDENTIFIED AS** A KEY ENABLING TECHNOLOGY

Photonics is a KET

Green Photonics answers societal challenges

- Generate or conserve energy
- Cut Grenhouse gas emissions
- **Reduce pollution**
- Yield Environmentally sustainble outputs, improve public health

Clean Manufacturing with Laser processing

electricity generation

Highly Efficient Solid State Lighting

Energy efficient communication technology

"European Roadmap Electrification of Road Transport",

Mass production of dedicated electric and plug-in hybrid vehicles is feasible by 2020 if fundamental progress is made in six technology fields:

- 1. energy storage systems,
- 2. drive train technologies,
- 3. vehicle integration,
- 4. safety,
- 5. road integration
- 6. grid integration.

require significant increases of energy efficiency reductions of cost

More Electric Aircraft

Airbus Technology Roadmap– ASD Conference 2012 Lisbon

Innovation takes off

NOT EXPLICITELY IDENTIFIED AS A KEY ENABLING TECHNOLOGY BUT TRANSVERSE

Micro and nanoelectronics

Advanced Materials

Semiconductor Power Electronics / packaging

Heat Management

Nanotechnology

Biotechnology

Photonics

~

Advanced Manufacturing systems

Electricity Generation

Industrial applications

Top 20 Power Semiconductor Players Mapping

Source Yole Developpement report on Power Electronics 2012

2011 Power Device sales by region

• • • • • • • • •

- Overall Asia is still the landing-field for more than 65% of power products. Indeed, most of the integrators are located in China, Japan or Korea.
- Europe is very dynamic as well with top players in traction, grid, PV inverter, motor control...

- The big-names of the power electronics industry are historically from Japan. 9 companies of the TOP-20 are Japanese.
- Very few power manufacturers in Asia out of Japan
- Europe and US are sharing 4 of the TOP-5 companies

Source Yole Developpement report on Power Electronics 2012

Source Yole Developpement

Rail	PV	EV/HEV
Wind	UPS/AC dr	ives

Main players in Power module market

Source Yole Developpement report on Power Electronics 2012

Adapted from e4u

INTERNAL FACTORS

POWER ELECTRONICS

SiC :

Better at > 600V

Runs at higher temperature

100M\$ annually and sells in Photovoltaics and Hybrid Vehicle markets

is getting « cheaper » : moving from 2 to 3 inches

- CREE MOSFET 1200V 20A
- 144€ in 2011
- 21€ in 2013 (Farnell)
- IGBT 1200V 33A
- 6€ in 2011
- 5€ unit price, 3€ >100pcs

GaN

Has strong potential for fast switching at 600V :

Servers, network base stations

Cheaper than SiC

Source IMEC

Silicon

Super Junction MOSFETS

Improved trench technology

Targets > 600V

Toshiba DTMOS 4 600V MOSFET Source System Plus consulting/Yole Innovative trench gate

Forecast in 2015

Yole développement report on Power electronics 2012

• • • • • • • • •

LOWER LOSSES

- HIGH POWER DENSITY
- HIGHER SWITCHING FREQUENCY
- HIGHER OPERATING TEMPERATURE
- LONGER LIFETIME and HIGHER AVAILABILITY in HIGH POWER APPLICATIONS
- **COMPACTNESS, WEIGHT REDUCTION , HEAT MANAGEMENT**

IN TOUGH ENVIRONMENT : OFF SHORE WIND TURBINES, GRID OR AUTOMOTIVE

INCREASED CURRENT DENSITY

LOW ELECTRICAL RESISTANCE IN LEADS

INCREASED POWER DENSITY INDUCE SHEAR STRESS

HEAT EXTRACTION

FAST SWITCHING

REDUCED PARASITICS

HIGH TEMPERATURE OPERATION

RELIABILITY AT > 200°C and CYCLING

Packaging roadmap for integration S²

URIPIDES

• • • • • • • •

AN OPPORTUNITY FOR WIDE BANDGAP MATERIAL

In Tough environment specifications

Higher Breakdown Voltage enables Faster Switching

Allow Higher Junction temperatures

FAST SWITCHING PACKAGING

Hurdles for GaN and SiC

S² EURIPIDES

From 2004 to 2013: 1,13B€ of collaborative and co-funded R&D in EUROPE for POWER Electronics

What FP7-Cooperation does

Support Excellence in Science

FUNDING : EU

Material Science Components

Thermal Management

Packaging and systems

HIPOSWITCH 5,57M€

GaN-based normally-off high power switching transistor for efficient power converters THEMA – CNT 3,46M€

Thermal Management with Carbon Nanotube Architectures HERMES 14,37 M€

High density integration by embedding chips for reduced size modules and electronic systems

FP7- HIPOSWITCH

200 mm GaN on Silicon

- Telecom power converter working at frequency targeting 300-500kHz , 600V capable package: reduced passive size, heatsinks and weight
- 10x smaller chip footprint
 - Thin wafer technology

FP7- HERMES : from H. Stahr AT&S

Power module

Stack up

- Motor control
- Air conditions
- Washing machines

Key fea	tures
---------	-------

- Reliability
- Footprint reduction

uni asa

Electrical isolation

Benefits

Encapsulation

Cross section

- Higher power rates
- Remove wire-bond connections

Supports more maturetechnologies and Pilot Lines

Funding : EU +	Member States
----------------	----------------------

EPPL :	AGATE :	EPT 300 :
74 <i>,</i> 8M€	59,6 M€	43,6 M€
Enhanced Power PILOT Line	Development of Advanced GaN Substrates and Technologies:	Enabling Power Technologies on 300mm
300mm Pilot line	Demonstrate processing on 6 and 8 inches wafer.	

Supports Higher TRL technology closer to market

FUNDING : Member states

CATRENE RELY : 7,4M€

CATRENE/EURIPIDES THOR 32,6M€

EURIPIDES : ENERPACK 2,88M€

RELY - Design for RELIABILITY of SoCs for Applications like Transportation, Medical, and Industrial Automation

EURIPIDES² Smart Electronics Systems

Smart system functionalities

Sensing, Metering, Measuring

Actuating, incl. smart power electronics and LED, laser, light

Data storage and processing, artificial intelligence

Communication and data transmission (incl. wired and wireless communication), communicating objects

Man-machine **interface**, e.g. displays, key pads, machine to machine, ...

Energy storage, management and harvesting (smart grids, smart building, ...)

Process and component technologies

Materials and Process technologies

Component technologies including MEMS, optoelectronics, printed, flexible electronics and bioelectronics

Packaging technologies, housing

System integration technologies

Reliability

EURIPIDES² industrial value chain

LEVEL 1 | Processes, equipment and tools, materials, substrates, packages

LEVEL 2 | Interconnection and passive components as well as MEMs and advanced packaging activities (excluding other semiconductor devices)

LEVEL 3 | Subsystem assembly, boards and modules including SiP, MCM and other 3D assemblies...

LEVEL 4 | Electronic products, systems, stand-alone (e.g. smartphones, PCs...), embedded (e.g. engine control unit...), "enmeshed" or "implanted" (e.g. intelligent clothes, building materials, medical implants, ...)

SiC Thermal Runaway

Effect exists in VJFETsOptimization is possible

LLC resonant converter •2.5 kW, 150kHz-250 kHz HV/LV •1 W/cm³

THOR - Selected highlights

Early exploitation of THOR technology

Autonomous Systems and Autonomous Wireless Sensor Networks

Many technical options, no standard solution !

Low Energy Power Management

Energy Scavenger in Cardiac Implants

8 cm ³	Taille du stimulateur	40 µW < 1 cm ³	
Pile 2.5 cm ³	Source d'énergie	μ-générateur < 0.5 cm ³	
1.5 cm ³	Circuit électronique	< 0.3 cm ³	
2 x 1D	Accéléromètre	1 x 3D	
Sonde	Interface avec le cœur	capsule	

· ~ ~

GEMALTO: Self Powered Display Card;

1234

× OBJECTIVE: 5 years energetically self sufficient display card

× Looking for technology partner ship on:

- × Power management
- × Energy storage
 - × Green battery
 - × supercapacitor
- × Energy harvestiing
 - × PV
 - × Piezo
 - × Vibration
 - × ...

× Very low power Display (B stable if possible)

ECPE : Jochen Koszescha

Yole Développement : Philippe Roussel

TYNDALL : Michael Hayes

THOR project : Mark Van Helvoort, Patrick Dubus

SORIN : Renzo Dal Molin

GEMALTO : Béatrice Dubois

Thank you for your attention @euripides-eureka.eu

www.euripides-eureka.eu

